

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Hanbury Brown-Twiss (HBT) interferometry with event-by-event fluctuations

Christopher J. Plumberg
In collaboration with Chun Shen and Ulrich Heinz
(arXiv:1306.1485)

The Ohio State University

March 8, 2014

Background and Motivation

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Hanbury-Brown–Twiss (HBT) interferometry (also, 'intensity interferometry' or 'femtoscopy') relies on two-particle momentum correlations to study the geometric and flow properties of heavy-ion collisions:

- azimuthally-sensitive HBT analyses communicate important information about deformations in the structure of the freeze-out surface
- odd harmonics present in HBT radii known to open the window to the study of event-by-event fluctuations
- fulfills a vital role in constraining the initial state of the fireball and its subsequent evolution

Hanbury Brown-Twiss (HBT) interferometry with event-by-event fluctuations Christopher J. Plumberg

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Part 1: 3rd order HBT

HBT Basics

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Two particles: $\vec{p}_1, \ \vec{p}_2 \longrightarrow \vec{q} \equiv \vec{p}_1 - \vec{p}_2, \ \vec{K} \equiv \frac{1}{2}(\vec{p}_1 + \vec{p}_2)$

Correlation function:
$$C(\vec{p}_1, \vec{p}_2) \equiv \frac{E_{p_1} E_{p_2} \frac{dN}{d^3 p_1 d^3 p_2}}{\left(E_{p_1} \frac{dN}{d^3 p_1}\right) \left(E_{p_2} \frac{dN}{d^3 p_2}\right)}$$

Ignoring final-state interactions, C may be fit to the form:

$$C(ec{q},ec{K}) = 1 \pm \lambda(ec{K}) \exp\left(-\sum_{i,j=o,s,l} R_{ij}^2(ec{K}) q_i q_j
ight),$$

 $R_{ij}^2 = R_{ij}^2(|\vec{K}|, \Phi_K) \rightarrow measure \ \Phi_K \ with \ respect \ to \ what?$

Fourier moments of $R_{ij}^2(\vec{K})$

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

- Experimentally, one measures HBT correlations as a function of the *difference* between Φ_K and one of the flow angles Ψ_n
 - \Rightarrow we plot observable quantities against $\Phi_K \Psi_n$, (n = 1, 2, 3, ...)
- lacksquare The flow angle is defined by Ψ_n in $v_n e^{in\Psi_n} \equiv \left\langle e^{in\phi_p}
 ight
 angle$
- The v_n are the anisotropic flow coefficients and ϕ_p is the azimuthal angle of \vec{p}_T of the emitted particles in the lab frame
- ⇒ Fourier-decompose the R_{ij}^2 :

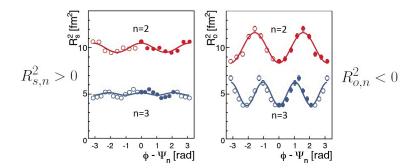
$$R_{ij}^{2}(|\vec{K}|, \Phi_{K}) = 2\sum_{n=1}^{\infty} \left(R_{ij,n}^{2(c)}(|\vec{K}|) \cos[n(\Phi_{K} - \Psi_{n})] + R_{ij,n}^{2(s)}(|\vec{K}|) \sin[n(\Phi_{K} - \Psi_{n})] \right) + R_{ij,0}^{2}(|\vec{K}|)$$

PHENIX data

Hanbury Brown-Twiss (HBT) interferometry with event-by-event fluctuations

(arXiv:1306.1485)

T. Niida, (QM 2012, arXiv:1304.2876) (integrated over K_{\perp})



Important features to understand:

- Different signs of Fourier coefficients in out and side directions
 - Different oscillation amplitudes: $R_{o,n}^2/R_{s,n}^2 \gg 1$

Emission function

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

We define the emission function S(x, K) as the Wigner density of the fireball

Emission function:
$$\int d^4x \, S(x,K) = E_K \frac{dN}{d^3K}$$

Taking $\lambda(\vec{K}) = 1$, C and S may be related by

$$C(ec{q},ec{K})pprox 1+\left|rac{\int d^4x\,\mathrm{e}^{iq\cdot x}S(x,K)}{\int d^4x\,S(x,K)}
ight|^2$$

- For Gaussian sources S(x, K), $R_{ij}^2 = \langle (\tilde{x}_i \beta_i \tilde{t})(\tilde{x}_j \beta_j \tilde{t}) \rangle$, where
- $ilde{\mathbf{x}}_i \equiv \mathbf{x}_i \langle \mathbf{x}_i
 angle \,, \ ilde{t} \equiv t \langle t
 angle \,, \ ec{eta} \equiv ec{K}/K^0$ and

 \Rightarrow given S(x,K), $R_{ij}^2(\vec{K})$ may be computed directly

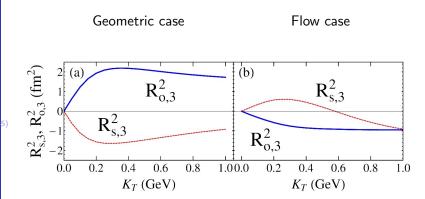
Emission function

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

- Consider S with two kinds of different triangular deformations:
 - "Geometric case" Triangular spatial deformation with radial flow, no triangular flow
 - "Flow case" Triangular flow, no spatial deformation
- Can obtain triangular oscillations of R_{ij}^2 from
 - triangular flow deformation
 - triangular spatial deformation coupled to radial flow
 - combinations thereof

HBT oscillation amplitudes: two examples

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations



Part 1: Conclusions

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

- Without radial flow, a triangular spatial deformation of the source at freeze-out leaves no measurable trace in the HBT radii oscillations
- Triangular oscillations of HBT radii may generally result from an admixture of triangular collective flow and triangular spatial deformation coupling to radially symmetric flow
- We can distinguish "flow domination" from "geometry domination" by the phases and K_T -dependence of the respective oscillation amplitudes; PHENIX data appear to point to "flow domination"

Brown-Twiss (HBT) interferometry with event-by-event fluctuations Christopher J. Plumberg In collaboration with Chun

(arXiv:1306.1485)

Hanbury,

Part 2:

Event-by-event hydrodynamics

Next steps...

- Hanbury
 Brown-Twiss
 (HBT)
 interferometry
 with
 event-by-event
 fluctuations
- Christopher J.
 Plumberg
 In
 collaboration
 with Chun
 Shen and
 Ulrich Heinz
 (arXiv:1306.1485)

- Our analysis assumed Gaussian, ensemble-averaged ansatz for S(x, K)
 - \Rightarrow what do we find in an event-by-event (EBE) hydrodynamic treatment?
- Construct (viscous) hydrodynamic emission function using Cooper-Frye formula:

$$S_{hydro}(x,K) = \frac{1}{(2\pi)^3} \int_{\Sigma(x_f)} K \cdot d^3 \sigma(x_f) \delta^4(x - x_f) f(x_f, K),$$

$$f(x,K) = f_0 + \delta f$$

$$= \frac{1}{e^{(K \cdot u - \mu)/T} \pm 1} + \frac{\chi(K^2) K^{\mu} K^{\nu} \pi_{\mu\nu}}{2T^2 (e + p)} f_0(1 \pm f_0)$$

Next steps...

- Hanbury
 Brown-Twiss
 (HBT)
 interferometry
 with
 event-by-event
 fluctuations
- Christopher J.
 Plumberg
 In
 collaboration
 with Chun
 Shen and
 Urich Heinz
 (arXiv:1306.1485)

- Our analysis assumed Gaussian, ensemble-averaged ansatz for S(x, K)
 - \Rightarrow what do we find in an event-by-event (EBE) hydrodynamic treatment?
- Construct (viscous) hydrodynamic emission function using Cooper-Frye formula:

$$S_{hydro}(x,K) = \frac{1}{(2\pi)^3} \int_{\Sigma(x_f)} K \cdot d^3 \sigma(x_f) \delta^4(x - x_f) f(x_f, K),$$

$$f(x,K) = f_0 + \delta f$$

$$= \frac{1}{e^{(K \cdot u - \mu)/T} \pm 1} + \frac{\chi(K^2) K^{\mu} K^{\nu} \pi_{\mu\nu}}{2T^2 (e + p)} f_0(1 \pm f_0)$$

- How are our results affected by ensemble-averaging?
 - ←□ > ←□ > ←□ > ←□ > ←□ > ←□ = ←○

Next steps...

- Hanbury
 Brown-Twiss
 (HBT)
 interferometry
 with
 event-by-event
 fluctuations
- Christopher J.
 Plumberg
 In
 collaboration
 with Chun
 Shen and
 Ulrich Heinz
 (arXiv:1306.1485)

- Our analysis assumed Gaussian, ensemble-averaged ansatz for S(x,K)
 - ⇒ what do we find in an event-by-event (EBE) hydrodynamic treatment?
- Construct (viscous) hydrodynamic emission function using Cooper-Frye formula:

$$\begin{split} S_{hydro}(x,K) &= \frac{1}{(2\pi)^3} \int_{\Sigma(x_f)} K \cdot d^3 \sigma(x_f) \delta^4(x - x_f) f(x_f,K), \\ f(x,K) &= f_0 + \delta f \\ &= \frac{1}{e^{(K \cdot u - \mu)/T} \pm 1} + \frac{\chi(K^2) K^{\mu} K^{\nu} \pi_{\mu\nu}}{2T^2 (e + p)} f_0(1 \pm f_0) \end{split}$$

- How are our results affected by ensemble-averaging?
- How should one extract HBT radii from a non-Gaussian source?

(At least) 3 Ways of getting HBT radii

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

• Option 1: compute R_{ii}^2 from S_{hydro} via source variances,

$$R_{ij}^2 = \langle (\tilde{x}_i - \beta_i \tilde{t})(\tilde{x}_j - \beta_j \tilde{t}) \rangle = -\frac{1}{2(C-1)} \left. \frac{\partial^2 C}{\partial q_i \partial q_j} \right|_{q \to 0}$$

■ Option 2: Construct C(q, K) from $S_{hydro} \rightarrow$ extract R_{ij}^2 from Gaussian fit to correlator, $C-1 \sim \exp\left(-\sum_{i,j} R_{ij}^2 q_i q_j\right)$

■ Option 3: Construct C(q, K) from $S_{hydro} \rightarrow$ extract R_{ij}^2 from "q-moments method":

$$\frac{1}{2} \left(\mathcal{R}^{-1} \right)_{ij} = \frac{\int d^3 q \, q_i q_j \left(C - 1 \right)}{\int d^3 q \, \left(C - 1 \right)}, \quad \text{where } \mathcal{R} \equiv \left(R_{ij}^2 \right) \left(K \right)$$

(At least) 3 Ways of getting HBT radii

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

• Option 1: compute R_{ii}^2 from S_{hydro} via source variances,

$$R_{ij}^2 = \langle (\tilde{x}_i - \beta_i \tilde{t})(\tilde{x}_j - \beta_j \tilde{t}) \rangle = -\frac{1}{2(C-1)} \left. \frac{\partial^2 C}{\partial q_i \partial q_j} \right|_{q \to 0}$$

- Option 2: Construct C(q, K) from $S_{hydro} o$ extract R_{ij}^2 from Gaussian fit to correlator, $C-1 \sim \exp\left(-\sum_{i,j} R_{ij}^2 q_i q_j\right)$
- Option 3: Construct C(q, K) from $S_{hydro} \rightarrow \text{extract } R_{ij}^2$ from "q-moments method":

$$\frac{1}{2} \left(\mathcal{R}^{-1} \right)_{ij} = \frac{\int d^3 q \, q_i q_j \left(C - 1 \right)}{\int d^3 q \, \left(C - 1 \right)}, \quad \text{where } \mathcal{R} \equiv \left(R_{ij}^2 \right) \left(K \right)$$

(At least) 3 Ways of getting HBT radii

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

• Option 1: compute R_{ii}^2 from S_{hydro} via source variances,

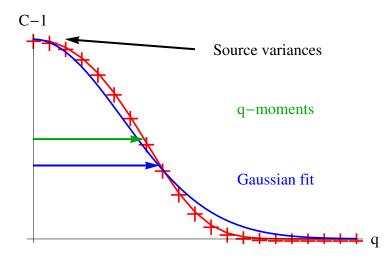
$$R_{ij}^{2} = \langle (\tilde{x}_{i} - \beta_{i}\tilde{t})(\tilde{x}_{j} - \beta_{j}\tilde{t}) \rangle = -\frac{1}{2(C-1)} \left. \frac{\partial^{2} C}{\partial q_{i} \partial q_{j}} \right|_{q \to 0}$$

- Option 2: Construct C(q, K) from $S_{hydro} o$ extract R_{ij}^2 from Gaussian fit to correlator, $C-1 \sim \exp\left(-\sum_{i,j} R_{ij}^2 q_i q_j\right)$
- Option 3: Construct C(q, K) from $S_{hydro} \rightarrow \text{extract } R_{ij}^2$ from "q-moments method":

$$\frac{1}{2} \left(\mathcal{R}^{-1} \right)_{ij} = \frac{\int d^3q \, q_i q_j \left(C - 1 \right)}{\int d^3q \, \left(C - 1 \right)}, \quad \text{where } \mathcal{R} \equiv \left(R_{ij}^2 \right) \left(K \right)$$

Comparison of HBT methods

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations



Brown-Twiss (HBT) interferometry with event-by-event fluctuations

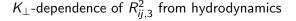
Christopher J. Plumberg In collaboration

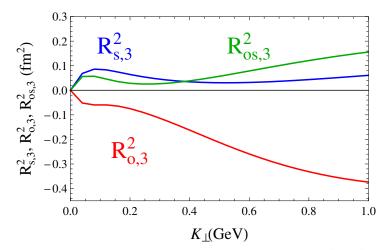
Hanbury

Plumberg In collaboration with Chun Shen and Ulrich Heinz (arXiv:1306.1485)

Results

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

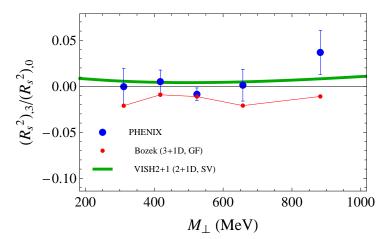




Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

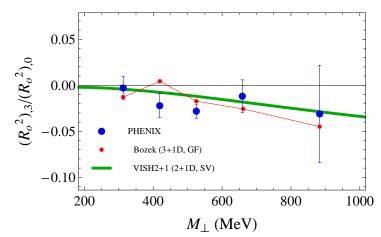
Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

 M_{\perp} -dependence of $R_{s,3}^2/R_{s,0}^2$ from hydrodynamics¹



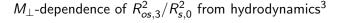
¹arXiv:1401.7680, arXiv:1401.4894

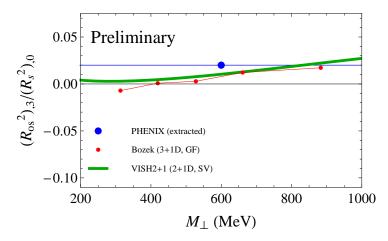
Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations



²arXiv:1401.7680, arXiv:1401.4894

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations





³arXiv:1401.7680, arXiv:1401.4894

Part 2: Conclusions

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

- VISH2+1 qualitatively reproduces general trends of PHENIX data
- \blacksquare Qualitative features of K_\perp -dependence of hydrodynamic $R_{ij,3}^2$ similar to toy model for small K_\perp , more discrepancies at $K_\perp \gtrsim 0.3~\text{GeV}$
- Subtleties involving ensemble-averaging and the construction of the correlation function have not been addressed here

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Thanks for your attention!

Thanks also to my collaborators

Ulrich Heinz and Chun Shen!

Double-Fourier formalism

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Define

$$S_{\ell,m} \equiv e^{-im\Psi_3} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{i\ell\phi} \int_{-\pi}^{\pi} \frac{d\Phi_K}{2\pi} e^{im\Phi_K} S(\phi, \Phi_K),$$

$$\longrightarrow \mathcal{Z}_{\ell} \ \equiv \ \mathrm{e}^{-i\ell\Psi_3} \sum_{m=-\infty}^{\infty} S_{\ell,m-\ell} \mathrm{e}^{-im(\Phi_K - \Psi_3)} \equiv \mathcal{X}_{\ell} + i\mathcal{Y}_{\ell}$$

We can show, e.g.,

$$\langle x_s^2 \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r \, dr \pi r^2 \left(\mathcal{X}_0 - \mathcal{X}_2 \right)$$
$$\langle x_s \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r \, dr 2\pi r \mathcal{Y}_1$$

- Since $R_s^2 = \langle x_s^2 \rangle \langle x_s \rangle^2$, no dependence on $\ell \geq 3$ (similarly for other R_{ii}^2)!
- N.B.: same expression contains all orders in $\Phi_{K_{+}}$

Double-Fourier formalism

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Define

$$S_{\ell,m} \equiv \mathrm{e}^{-im\Psi_3} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} \mathrm{e}^{i\ell\phi} \int_{-\pi}^{\pi} \frac{d\Phi_K}{2\pi} \mathrm{e}^{im\Phi_K} S(\phi, \Phi_K),$$

$$\longrightarrow \mathcal{Z}_{\ell} \ \equiv \ \mathrm{e}^{-i\ell\Psi_3} \sum_{m=-\infty}^{\infty} S_{\ell,m-\ell} \mathrm{e}^{-im(\Phi_K - \Psi_3)} \equiv \mathcal{X}_{\ell} + i\mathcal{Y}_{\ell}$$

We can show, e.g.,

$$\langle x_s^2 \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r dr \pi r^2 (\mathcal{X}_0 - \mathcal{X}_2)$$
$$\langle x_s \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r dr 2\pi r \mathcal{Y}_1$$

- Since $R_s^2 = \langle x_s^2 \rangle \langle x_s \rangle^2$, no dependence on $\ell \geq 3$ (similarly for other R_{ii}^2)!
- N.B.: same expression contains all orders in $\Phi_{K_{\bullet}}$

Double-Fourier formalism

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

Define

$$S_{\ell,m} \equiv e^{-im\Psi_3} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{i\ell\phi} \int_{-\pi}^{\pi} \frac{d\Phi_K}{2\pi} e^{im\Phi_K} S(\phi, \Phi_K),$$

$$\longrightarrow \mathcal{Z}_{\ell} \ \equiv \ \mathrm{e}^{-i\ell\Psi_3} \sum_{m=-\infty}^{\infty} S_{\ell,m-\ell} \mathrm{e}^{-im(\Phi_K - \Psi_3)} \equiv \mathcal{X}_{\ell} + i\mathcal{Y}_{\ell}$$

We can show, e.g.,

$$\langle x_s^2 \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r dr \pi r^2 (\mathcal{X}_0 - \mathcal{X}_2)$$
$$\langle x_s \rangle = \int_{-\infty}^{\infty} d\eta \int_0^{\infty} \tau d\tau \int_0^{\infty} r dr 2\pi r \mathcal{Y}_1$$

- Since $R_s^2 = \langle x_s^2 \rangle \langle x_s \rangle^2$, no dependence on $\ell \geq 3$ (similarly for other R_{ii}^2)!
- N.B.: same expression contains all orders in Φ_K

Toy model for the source

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J.
Plumberg
In
collaboration
with Chun
Shen and
Ulrich Heinz
(arXiv:1306.1485)

$$\begin{split} S(x,K) &= \frac{S_0(K)}{\tau} \exp\left[-\frac{(\tau-\tau_f)^2}{2\Delta\tau^2} - \frac{(\eta-\eta_0)^2}{2\Delta\eta^2} \right. \\ &\left. - \frac{r^2}{2R^2} \left(1 + 2\bar{\epsilon}_3 \cos(3(\phi-\bar{\psi}_3))\right) \right. \\ &\left. - \frac{M_\perp}{T_0} \cosh(\eta-Y) \cosh\eta_t + \frac{K_\perp}{T_0} \cos(\phi-\Phi_K) \sinh\eta_t \right] \end{split}$$
 where

 $\eta_t = \frac{\eta_f r}{P} \left(1 + 2\bar{v}_3 \cos(3(\phi - \overline{\psi}_3)) \right)$

- \bullet $\bar{\epsilon}_3$: triangular azimuthal deformation
- \bar{v}_3 : triangular flow deformation
- \bullet η_f : collective radial flow rapidity
- $\bar{\psi}_3$: triangular flow velocity angle, points in direction of largest flow rapidity and steepest descent of spatial density profile (note:

$$\Psi_n \neq \psi_n$$
 in general)